Quick Start Guide
This guide will help you get started with EMOS quickly through practical examples.
Basic Workflow
Step 1: Choose Your Research Goal
First, determine what you want to accomplish:
Discover new materials: Use Materials Exploration features
Optimize electronic devices: Use Electronics Application features
Analyze existing materials: Use characterization and analysis features
Step 2: Select a Feature
Navigate to the EMOS application and choose from available features:
Materials Exploration Examples:
Material Search (Feature ID: 1)
Material Generation (Feature ID: 2)
DFT Calculation (Feature ID: 5)
Electronics Application Examples:
Interface Calculation (Feature ID: 10)
Band Structure (Feature ID: 12)
Thermal Management (Feature ID: 13)
Step 3: Configure Information Units
Select which databases, generators, and predictors to use:
Common Configurations:
Database-heavy: ICSD + Materials Project + JARVIS
Generation-focused: MatterGen + iMatGen + M3GNet predictor
Prediction-intensive: M3GNet + MatterSim + DeepMD
Step 4: Provide Inputs
Enter the required parameters. Each feature has specific input requirements.
Example Workflows
Example 1: Finding High-Conductivity Materials
Objective: Find materials with high electrical conductivity
Steps:
Select “Material Search” feature (ID: 1)
Configure Information Units:
Databases: Materials Project, JARVIS
Predictors: M3GNet, MatterSim
Input Parameters:
Search criteria: “high conductivity”
Property range: conductivity > 10^6 S/m
Crystal systems: cubic, hexagonal
Execute and review results
Expected Output:
List of candidate materials
Predicted conductivity values
Crystal structure information
Database references
Example 2: Interface Analysis
Objective: Analyze Al/Si interface properties
Steps:
Select “Interface Calculation” feature (ID: 10)
Configure Information Units:
Databases: ICSD (for structure data)
Predictors: M3GNet, DeepMD
Input Parameters:
Interface Type: metal-semiconductor
Material A: Al (Aluminum)
Material B: Si (Silicon)
Calculation Method: DFT
Execute and analyze interface properties
Expected Output:
Interface energy: ~1.247 J/m²
Band offset: ~1.85 eV
Lattice mismatch: ~2.3%
Interface states density
Charge transfer information
Example 3: New Material Generation
Objective: Generate novel semiconductor materials
Steps:
Select “Material Generation” feature (ID: 2)
Configure Information Units:
Databases: Materials Project (for training data)
Generators: MatterGen, GNoME
Predictors: M3GNet (for property validation)
Input Parameters:
Target properties: semiconductor, band gap 1-3 eV
Elements: Si, Ge, C, N
Crystal system: any
Number of candidates: 50
Execute and evaluate generated materials
Expected Output:
50 novel material candidates
Predicted band gaps
Stability assessments
Synthesizability scores
Common Input Parameters
Universal Parameters
All features accept these common parameters:
active_databases: List of database configurations
active_generators: List of generator configurations
active_predictors: List of predictor configurations
Feature-Specific Parameters
Material Search:
searchTerm: What to search forpropertyRange: Target property valueselementList: Allowed elements
Interface Calculation:
interfaceType: Type of interface (metal-semiconductor, etc.)materialA: First materialmaterialB: Second materialcalculationMethod: Computational method
Material Generation:
targetProperties: Desired propertieselementConstraints: Allowed elementsnumCandidates: Number of materials to generate
Understanding Results
Result Structure
All features return structured results with:
Primary Results: Main computational outputs
Metadata: Processing information and parameters
Information Unit Results: Individual outputs from databases, generators, predictors
Status Information: Success indicators and warnings
Interpreting Outputs
Database Results:
Material identifiers and references
Crystal structure data
Experimental properties
Generator Results:
New material structures
Generation confidence scores
Novelty assessments
Predictor Results:
Property predictions with uncertainty
Confidence intervals
Model performance metrics
Best Practices
Information Unit Selection
Start Simple: Begin with 1-2 information units per type
Match Purpose: Choose units that align with your research goals
Consider Speed: More units = longer processing time
Validate Results: Use multiple predictors for cross-validation
Input Guidelines
Be Specific: Provide detailed, specific inputs for better results
Reasonable Ranges: Use realistic property ranges and constraints
Check Units: Ensure all units are consistent (eV, Å, etc.)
Start Small: Begin with small parameter sets and expand
Result Analysis
Check Convergence: Ensure calculations converged properly
Cross-Validate: Compare results from different information units
Consider Uncertainty: Pay attention to prediction confidence
Document Process: Keep track of parameters and configurations used
Troubleshooting
Common Issues
No Results Found:
Broaden search criteria
Try different databases
Check input parameter validity
Slow Processing:
Reduce number of information units
Limit search scope
Use faster prediction models
Inconsistent Results:
Check information unit compatibility
Verify input parameter units
Consider model limitations
Error Messages:
Review input parameters for completeness
Check information unit availability
Consult the troubleshooting reference