# Quick Start Guide This guide will help you get started with EMOS quickly through practical examples. ## Basic Workflow ### Step 1: Choose Your Research Goal First, determine what you want to accomplish: - **Discover new materials**: Use Materials Exploration features - **Optimize electronic devices**: Use Electronics Application features - **Analyze existing materials**: Use characterization and analysis features ### Step 2: Select a Feature Navigate to the EMOS application and choose from available features: **Materials Exploration Examples:** - Material Search (Feature ID: 1) - Material Generation (Feature ID: 2) - DFT Calculation (Feature ID: 5) **Electronics Application Examples:** - Interface Calculation (Feature ID: 10) - Band Structure (Feature ID: 12) - Thermal Management (Feature ID: 13) ### Step 3: Configure Information Units Select which databases, generators, and predictors to use: **Common Configurations:** - **Database-heavy**: ICSD + Materials Project + JARVIS - **Generation-focused**: MatterGen + iMatGen + M3GNet predictor - **Prediction-intensive**: M3GNet + MatterSim + DeepMD ### Step 4: Provide Inputs Enter the required parameters. Each feature has specific input requirements. ## Example Workflows ### Example 1: Finding High-Conductivity Materials **Objective**: Find materials with high electrical conductivity **Steps**: 1. Select "Material Search" feature (ID: 1) 2. Configure Information Units: - Databases: Materials Project, JARVIS - Predictors: M3GNet, MatterSim 3. Input Parameters: - Search criteria: "high conductivity" - Property range: conductivity > 10^6 S/m - Crystal systems: cubic, hexagonal 4. Execute and review results **Expected Output**: - List of candidate materials - Predicted conductivity values - Crystal structure information - Database references ### Example 2: Interface Analysis **Objective**: Analyze Al/Si interface properties **Steps**: 1. Select "Interface Calculation" feature (ID: 10) 2. Configure Information Units: - Databases: ICSD (for structure data) - Predictors: M3GNet, DeepMD 3. Input Parameters: - Interface Type: metal-semiconductor - Material A: Al (Aluminum) - Material B: Si (Silicon) - Calculation Method: DFT 4. Execute and analyze interface properties **Expected Output**: - Interface energy: ~1.247 J/m² - Band offset: ~1.85 eV - Lattice mismatch: ~2.3% - Interface states density - Charge transfer information ### Example 3: New Material Generation **Objective**: Generate novel semiconductor materials **Steps**: 1. Select "Material Generation" feature (ID: 2) 2. Configure Information Units: - Databases: Materials Project (for training data) - Generators: MatterGen, GNoME - Predictors: M3GNet (for property validation) 3. Input Parameters: - Target properties: semiconductor, band gap 1-3 eV - Elements: Si, Ge, C, N - Crystal system: any - Number of candidates: 50 4. Execute and evaluate generated materials **Expected Output**: - 50 novel material candidates - Predicted band gaps - Stability assessments - Synthesizability scores ## Common Input Parameters ### Universal Parameters All features accept these common parameters: - **active_databases**: List of database configurations - **active_generators**: List of generator configurations - **active_predictors**: List of predictor configurations ### Feature-Specific Parameters **Material Search**: - `searchTerm`: What to search for - `propertyRange`: Target property values - `elementList`: Allowed elements **Interface Calculation**: - `interfaceType`: Type of interface (metal-semiconductor, etc.) - `materialA`: First material - `materialB`: Second material - `calculationMethod`: Computational method **Material Generation**: - `targetProperties`: Desired properties - `elementConstraints`: Allowed elements - `numCandidates`: Number of materials to generate ## Understanding Results ### Result Structure All features return structured results with: - **Primary Results**: Main computational outputs - **Metadata**: Processing information and parameters - **Information Unit Results**: Individual outputs from databases, generators, predictors - **Status Information**: Success indicators and warnings ### Interpreting Outputs **Database Results**: - Material identifiers and references - Crystal structure data - Experimental properties **Generator Results**: - New material structures - Generation confidence scores - Novelty assessments **Predictor Results**: - Property predictions with uncertainty - Confidence intervals - Model performance metrics ## Best Practices ### Information Unit Selection 1. **Start Simple**: Begin with 1-2 information units per type 2. **Match Purpose**: Choose units that align with your research goals 3. **Consider Speed**: More units = longer processing time 4. **Validate Results**: Use multiple predictors for cross-validation ### Input Guidelines 1. **Be Specific**: Provide detailed, specific inputs for better results 2. **Reasonable Ranges**: Use realistic property ranges and constraints 3. **Check Units**: Ensure all units are consistent (eV, Å, etc.) 4. **Start Small**: Begin with small parameter sets and expand ### Result Analysis 1. **Check Convergence**: Ensure calculations converged properly 2. **Cross-Validate**: Compare results from different information units 3. **Consider Uncertainty**: Pay attention to prediction confidence 4. **Document Process**: Keep track of parameters and configurations used ## Troubleshooting ### Common Issues **No Results Found**: - Broaden search criteria - Try different databases - Check input parameter validity **Slow Processing**: - Reduce number of information units - Limit search scope - Use faster prediction models **Inconsistent Results**: - Check information unit compatibility - Verify input parameter units - Consider model limitations **Error Messages**: - Review input parameters for completeness - Check information unit availability - Consult the troubleshooting reference