Materials Exploration Features
Materials Exploration features focus on discovering, generating, and analyzing materials for fundamental research applications. These features provide comprehensive workflows for materials scientists to explore chemical space, discover new materials, and understand their properties.
Available Features
1. Material Search (ID: 1)
Class: MaterialSearchFeature
Advanced database searching and filtering for materials discovery.
Description: “Material Search: Advanced search and filtering across multiple materials databases”
Capabilities:
Multi-database querying
Advanced filtering by composition, structure, and properties
Similarity searching
Recommendation systems
Input Parameters:
searchTerm: Material name, formula, or keywordelementList: Required or forbidden elementspropertyRange: Target property ranges (band gap, formation energy, etc.)structureType: Crystal system or space group constraintsmaxResults: Maximum number of results to returnactive_databases: Database configurations to search
Processing Steps:
Parse and validate search criteria
Query selected databases with optimized search terms
Aggregate and deduplicate results across databases
Apply filters and ranking algorithms
Generate similarity recommendations
Output Format:
{
'search_results': [
{
'material_id': str,
'formula': str,
'structure': dict,
'properties': dict,
'database_source': str,
'similarity_score': float
}
],
'search_statistics': {
'total_found': int,
'databases_searched': list,
'search_time': float
},
'recommendations': [...]
}
Use Cases:
Finding materials with specific properties
Literature review and prior art search
Building training datasets
Identifying research gaps
2. Material Generation (ID: 2)
Class: MaterialGenerationFeature
AI-powered generation of novel materials with targeted properties.
Description: “Material Generation: Generate novel materials using AI and machine learning models”
Capabilities:
Multi-generator ensemble approaches
Property-targeted generation
Composition-constrained generation
Novelty assessment
Input Parameters:
targetProperties: Desired property values and rangeselementConstraints: Allowed/forbidden elementscompositionSpace: Chemical composition constraintsnumCandidates: Number of materials to generatenoveltyThreshold: Minimum novelty requirementactive_generators: Generator configurations to use
Processing Steps:
Translate property targets to generator inputs
Apply composition and element constraints
Generate material candidates using selected generators
Validate structural feasibility
Assess novelty against existing databases
Rank candidates by target property alignment
Output Format:
{
'generated_materials': [
{
'structure': dict,
'composition': str,
'predicted_properties': dict,
'novelty_score': float,
'generator_source': str,
'confidence': float
}
],
'generation_statistics': {
'total_generated': int,
'valid_structures': int,
'novel_materials': int,
'generation_time': float
}
}
Use Cases:
Discovery of materials with specific properties
Filling gaps in materials space
Inverse design applications
High-throughput virtual screening
3. Database Extractor (ID: 3)
Class: DatabaseExtractorFeature
Bulk extraction and analysis of materials data from multiple databases.
Description: “Database Extractor: Extract and analyze large datasets from materials databases”
Capabilities:
Bulk data extraction
Cross-database correlation analysis
Data quality assessment
Statistical analysis and visualization
Input Parameters:
extractionQuery: Broad query for data extractiondataFields: Specific data fields to extractanalysisType: Type of analysis to performqualityFilters: Data quality criteriaoutputFormat: Format for extracted dataactive_databases: Databases to extract from
Processing Steps:
Execute bulk queries across selected databases
Standardize data formats and units
Perform quality assessment and filtering
Conduct cross-database correlation analysis
Generate statistical summaries and visualizations
Output Format:
{
'extracted_data': {
'materials': [...],
'properties': {...},
'statistics': {...}
},
'analysis_results': {
'correlations': dict,
'quality_metrics': dict,
'coverage_analysis': dict
},
'visualizations': [...]
}
Use Cases:
Building comprehensive datasets
Materials informatics studies
Trend analysis across materials classes
Database comparison and validation
4. Material Characterization (ID: 4)
Class: MaterialCharacterizationFeature
Comprehensive characterization of material properties using multiple methods.
Description: “Material Characterization: Comprehensive analysis and characterization of material properties”
Capabilities:
Multi-property prediction and analysis
Experimental data integration
Property correlation analysis
Characterization recommendations
Input Parameters:
targetMaterial: Material to characterizepropertyList: Properties to analyzecharacterizationMethods: Experimental/computational methodscomparisonMaterials: Reference materials for comparisonactive_predictors: Predictor configurations to use
Processing Steps:
Extract material structure and composition
Predict properties using selected predictors
Correlate with experimental data if available
Perform comparative analysis with similar materials
Generate characterization recommendations
Output Format:
{
'material_properties': {
'structural': {...},
'electronic': {...},
'mechanical': {...},
'thermal': {...}
},
'characterization_data': {
'predictions': {...},
'experimental': {...},
'correlations': {...}
},
'recommendations': [...]
}
Use Cases:
Complete material property assessment
Validation of new materials
Comparison with existing materials
Experimental planning
5. DFT Calculation (ID: 5)
Class: DFTCalculationFeature
Density functional theory calculations for accurate property prediction.
Description: “DFT Calculation: Perform DFT calculations for accurate materials properties”
Capabilities:
Structure optimization
Electronic structure calculations
Thermodynamic property prediction
High-accuracy property calculations
Input Parameters:
inputStructure: Initial crystal structurecalculationType: Type of DFT calculationfunctional: Exchange-correlation functionalkPointDensity: K-point mesh densityconvergenceCriteria: Convergence parametersactive_predictors: DFT-based predictors to use
Processing Steps:
Prepare input structures for DFT calculation
Optimize structures using DFT methods
Calculate electronic structure properties
Compute thermodynamic and mechanical properties
Validate results and assess convergence
Output Format:
{
'optimized_structure': dict,
'electronic_properties': {
'band_structure': dict,
'dos': dict,
'band_gap': float,
'work_function': float
},
'thermodynamic_properties': {
'formation_energy': float,
'heat_capacity': dict,
'thermal_expansion': float
},
'calculation_details': {...}
}
Use Cases:
High-accuracy property calculations
Structure optimization
Electronic structure analysis
Thermodynamic stability assessment
6. Crystallographic Analysis (ID: 6)
Class: CrystallographicAnalysisFeature
Detailed analysis of crystal structures and symmetries.
Description: “Crystallographic Analysis: Analyze crystal structures, symmetries, and structural relationships”
Capabilities:
Space group analysis
Structure comparison and matching
Defect analysis
Phase relationship studies
Input Parameters:
crystalStructure: Input crystal structureanalysisType: Type of crystallographic analysistolerances: Symmetry and matching tolerancesreferenceStructures: Structures for comparisonactive_databases: Databases for structural comparison
Processing Steps:
Analyze crystal symmetry and space group
Identify structural motifs and coordination environments
Compare with reference structures and databases
Analyze structural relationships and transformations
Generate crystallographic reports
Output Format:
{
'symmetry_analysis': {
'space_group': str,
'point_group': str,
'lattice_system': str,
'symmetry_operations': list
},
'structural_analysis': {
'coordination_environments': dict,
'bond_analysis': dict,
'polyhedral_analysis': dict
},
'comparison_results': [...],
'structural_relationships': [...]
}
Use Cases:
Crystal structure determination
Phase identification
Structural relationship studies
Defect and disorder analysis
7. Quantum Mechanics (ID: 7)
Class: QuantumMechanicsFeature
Quantum mechanical calculations for fundamental property understanding.
Description: “Quantum Mechanics: Quantum mechanical calculations and analysis of electronic properties”
Capabilities:
Wavefunction analysis
Orbital visualization
Electronic property calculations
Quantum mechanical descriptors
Input Parameters:
quantumSystem: System for quantum calculationcalculationLevel: Level of quantum theorybasisSet: Quantum mechanical basis setanalysisOptions: Types of quantum analysisactive_predictors: Quantum-based predictors
Processing Steps:
Set up quantum mechanical calculations
Solve electronic structure problem
Analyze wavefunctions and orbitals
Calculate quantum mechanical properties
Generate quantum descriptors
Output Format:
{
'electronic_structure': {
'orbital_energies': list,
'orbital_occupations': list,
'electron_density': dict
},
'quantum_properties': {
'ionization_potential': float,
'electron_affinity': float,
'chemical_hardness': float
},
'wavefunction_analysis': {...},
'quantum_descriptors': {...}
}
Use Cases:
Fundamental electronic structure analysis
Chemical bonding studies
Reactivity prediction
Quantum descriptor generation
8. Tensor Analysis (ID: 8)
Class: TensorAnalysisFeature
Analysis of tensor properties such as elastic, piezoelectric, and optical tensors.
Description: “Tensor Analysis: Calculate and analyze tensor properties including elastic, piezoelectric, and optical tensors”
Capabilities:
Elastic tensor calculations
Piezoelectric property analysis
Optical tensor determination
Anisotropy analysis
Input Parameters:
materialStructure: Crystal structure for tensor analysistensorTypes: Types of tensors to calculatestrainAmplitudes: Strain amplitudes for elastic calculationstemperatureRange: Temperature range for analysisactive_predictors: Tensor-capable predictors
Processing Steps:
Generate strained structures for tensor calculations
Calculate response properties under various conditions
Fit tensor elements from response data
Analyze tensor symmetries and invariants
Compute derived properties from tensors
Output Format:
{
'elastic_properties': {
'elastic_tensor': array,
'bulk_modulus': float,
'shear_modulus': float,
'elastic_anisotropy': float
},
'piezoelectric_properties': {
'piezoelectric_tensor': array,
'piezoelectric_constants': dict
},
'optical_properties': {
'dielectric_tensor': array,
'refractive_indices': list,
'birefringence': float
},
'anisotropy_analysis': {...}
}
Use Cases:
Mechanical property analysis
Piezoelectric device design
Optical materials characterization
Anisotropic property studies
Common Workflow Patterns
Multi-Feature Material Discovery
# 1. Search for existing materials
search_results = material_search.process({
'searchTerm': 'high mobility semiconductor',
'propertyRange': {'mobility': (100, 10000)},
'active_databases': database_configs
})
# 2. Generate new candidates
generation_results = material_generation.process({
'targetProperties': {'mobility': (1000, 5000)},
'elementConstraints': search_results['common_elements'],
'active_generators': generator_configs
})
# 3. Characterize promising materials
for material in generation_results['top_candidates']:
characterization = material_characterization.process({
'targetMaterial': material,
'propertyList': ['mobility', 'stability', 'band_gap'],
'active_predictors': predictor_configs
})
Comprehensive Material Analysis
# Complete analysis workflow
material = get_target_material()
# Structure and symmetry analysis
crystal_analysis = crystallographic_analysis.process({
'crystalStructure': material.structure,
'analysisType': 'full_symmetry'
})
# Electronic structure
dft_results = dft_calculation.process({
'inputStructure': material.structure,
'calculationType': 'electronic_structure'
})
# Tensor properties
tensor_results = tensor_analysis.process({
'materialStructure': material.structure,
'tensorTypes': ['elastic', 'piezoelectric', 'optical']
})
Best Practices
Feature Selection
Material Search: Start here for any new research direction
Material Generation: Use when existing materials don’t meet requirements
DFT Calculation: For high-accuracy, definitive property values
Material Characterization: For comprehensive property assessment
Input Guidelines
Start with broad searches and narrow down progressively
Use multiple databases and predictors for validation
Consider computational cost vs. accuracy trade-offs
Document all parameters for reproducibility
Result Interpretation
Cross-validate results across multiple features
Consider uncertainty and confidence levels
Validate against experimental data when available
Use statistical analysis for large datasets